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OPTIMAI, TRANSFER BETWEEN COPLANAR ELLIPTICAL ORBITS
USING TANGENTIAL PULSES APPLIED AT APSIDAL POINTS

A, S, Shmyrov

The problem of optimal pulse transfer between orbits is a /63
vital problem of celestial mechanics. Numerical methods and num-
erous analytic studies have been made toward its solution [1].

There are, moreovér, publications on numerical analysis of opti-~
mal trajectories.of acquisition of actual celestial bodies. This
study provides a solution of the particular case of the general

problem using sufficient conditions of optimacy.
1. Statement of the Problem

Let us consider the set of coplanar elliptical orbits, whose
apsidal lines coincide. Let us select a direction on the apsidal
line and call the apsidal point of the orbit positive, if its di-
rectional radius-vector is positive; the other apsidal ?oint will,
accordingly, be negative. The distances from the center of_gnévity

to the apsidal points will be denoted by r, and r_. The elements /64

+
of the orbit become fully defined with the assignment of two posi-
tive numbers r, and r_. In particular, by these values we can

calculate the value of velocities v and v_ of the apsidal points:

A -

v = (2u) R B R (;'-++}-;};1.’2;—- -
o ’({f=(2}")”?'fv_:”2ff (retr)=1, ‘ (1.1)

where W is the constant of gravity. -

Now let it be required to move between two orbits from the
set in gquestion using tangenital pulses applied at apsidal points

so that the characteristic velocity of transfer is minimal. Formula
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(1.1) permits us to establish how the values r and r_ vary as a

function of increases in velocity. Given that+at a positive ap-
sidal point velocity has received an infinitely small increase

dv > 0. The gquantity r, herein will not change, but the increase
dr_ of quantity r_ can be_calculated from the first formula of
{(1.1):

{ry+r)¥do, \

——— . —— e m—

e
dr_= 3 (42)r Pr

(1.2)

where the sign 'plus' is selected if the increase is given in the

direction of velocity, and the sign 'minus' if otherwise.

If, however, the increase dv was received by the quantity
v_r the value r_ will not change, but the increase dr_ is defined
from the second formula of (1.1): '
Ary=t ()RR (r, L gy | _ (1.3)

r—— < -

The sign on the right side of (1.3) is selected just as in (1.2).

1 !
4r.T_ of the quantities r, and

r_ in terms of characteristic velocity v depend on the point of

Therefore, the derivatives of r

application of the pulse and its direction with respect to velo-
city. They generally appear as

=) (Y, (1.4)
Lo =T A R (PR (1), .

where u, = _tl,‘u2 = 0; 1.

The quantities u;, u, are.'cohtrols and define the applied
pulse as follows: if u; = 1, the pulse is applied in the direction
of velocity; if u, = 0, the pulse is applied at the positive ap-

sidal point; if u, = 1, the pulse is applied at the negative ap-
2



sidal point; if.ul = -1, the pulse is aimed opposite velocity.

Now this problem can be formulated as a problem on the
optimal speed of response: to sel&ct such controls uy and u,
so the initial point (ri r ) transfer to a final  point (rﬁ, r )

with the least increase in the argument.

B

“~

2. Description of Control Synthesis
3 .
Let us introduce in&tead of the variables r,, r_ new vari-
ables xl,‘xz,'t according to the formulas

xX=r3, Xy=r, t= ([.Lf,‘Z “2 \

Equations (1.4) in the new variables will acquire the appearance

fl*xfl (X1 +X5)¥at 105,
K= X7 (X +x9)%% 1y (1 — o),

(2.1)

9

where {(+) denotes the differentiation with respect to t.

lLet us limit the set of possible values of Xy X

of A: al < xl

2 by the sguare

< X, £ Ay where a, << l,,a2 >> 1.

£a 1 2%

20 @
The meaning of this limitation is that the initial, f£inal
and transitional orbits lie within a circle formed by neighbor-

hoods with radimbazl, a;l.

Let us now examine the problem of optimal incidence from any
point of the square of A into point (1, k) for determinacy posit-
ing that k> 1. This problem is considered solved if controls Uy s
u, are found as functions of the variables Xy and Xor i.e., 1if
synthesis of the optimal control is made.

|



Let us first give a description of the synthesis, and the

proof of its optimacy will be made later.

In a figure is depicted the subdivision of square A into

areas Al ’ A2 ’ Aia, A4 P A5 ’ AG ' A7 ' AS’ A9 by qurVes MMl'

MiM,, MMy, MMj, MM,, MM, MgMg, MMs, MMo, MoMg, MoMg, MMg,
MgMg, MgMyq o MygMyy # MygMyo, MiMy, o MMy o MyoMygr MygMy,.
Each of these curves is defined by an equation and ineguality -

which have a form indicated below.

For curve Mle

,(xz—'x]) (x1+x2)~u2_(x2_al) '(xz_{__al)iq;g + (xl+k)!p:(k+;;):’2; )
B ,_____._W__‘ o ' a1<x1~<\:1 *__—_;_J_,’;_a»~~——‘—’- (2-2)

-For curve MMl
T S J | (2.3)

where Xo1. is the solution of equation (2.2) with respect to X, where
X = 1.
For curve M2M3

=y, k<x,Cxy 1 :
e A ,J- (2.4)

where K50 is the solution with respect to X, of equation (2.2)

where xl = al.
For curve MM3

- -t o

- .x=k,' < i’u. e o
Lk a<ngy | (2.5)



For curve M4M6
(2.6)

| PR () (k2 ) 1y (0, 40 (k+a1);ia'
i< Ky : ';//’

| | ) ‘ -

For curve MSMG . |
(o) (b ) R (e b a) P (- ay) %al)—m=(2w (2.7)

| 1
R R .

Tt m e - -

where X6 is the solution with respect to Xy of the system of
equations (2.6) and (2.7) in square A,
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For curve M_M_
6 7

Iy

;o= .

20, (rF20) o () (R4 )~V (x, ) ()=
=20 (k—a,) (h+2) 4k (k- 1),

{2.8)
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For curve M7Mg

(Xy—x3) (X1+¥z);1r2 +(‘c3;ﬁ,)_.( 2y F 1) (B ) (b+x) 2=
C=E=-DERDTE xSl . S (2.9)

where X9 is the solution with respect to X4 of system of equations
(2.8) and (2.9).

—_—

For curve M7M9 /67

F ' -W‘{A.;:‘H‘;z)m‘?'(l_xz)(1+x2)_m—(-x:;“1)(xl;i‘w;l)_.m-"_; '
Lo

)P+ (R—0) (B )P+ (1—8) (1 B2, 2y <, <L, (2.10)
For curve MQMll 5
_ . (x2”‘-’51) (x2+x1)_1’2+(-x‘+1)m—( — (tida 12
. 1P, —a) (x; )12
.; _L(g;)‘m;(r{e*_il) (b-a) 12— (1) (k-4 1)12 x'méigk] (2.11)

where Xog is the solution with respect to Xq of equation (2.11)
where X, = 1. -

For curve M M9

8
—_——— s - L= . - e —— , th
For curve MM8
e A (2.13)

where X,g is the solution of equation (2.9) where x, = 1 with

respect to Ko

For curve M10M12~

B et . e
6 A TH) (Rt ) TP (k—x)) (£ X024 (,—1) (- 1)—’1119

s ——




e D BT RSy L S (2.14)

For curve M12M13

Rl

" Gt ata) () () (e 0)— 0 () (k'+‘xﬂ
‘ (2.15)

L =2k ()T (k4 a2, X1z S X € Xy,

-

where X119 is the solution of equation (2.15) with respect to Xy
where x, = x,;, and X, is the solution of equatiord (2.11) with
respect to X where X, = k. )

For curve'Ml3M14

e e _
L (=) (22—, ) (xy ~ P
L - i (o +a) 1B (kg ~1p2
L TR 2 )R e, gii““*‘v

: o BT S C(2.16)

J

Fo# curve MMlo

:‘:ﬁj :-‘_xQ:k_! -llﬁvi’c]%x‘”o, w‘*‘ ‘ . (2 - 17)

where X110 is the solution of equation (2.14) with respect to
xl(x2 = k).

For curve M1M12

;x?,:xg;_, 1-<..)C1 gxll?.} R ( 2 - 18)
For curve MloMll
- T R e 'I..:-L ( 2 . 19)
:t2:k: ) x110<x1 fé.rﬁ;;. -+ . .-



For curve M11M13

X ='--'\7113v- Ry X J
K - ~AeS Hyg {2.20)

where X513 is the solution of equation (2.15) with respect to x,

where ] T Xq33°

Curves BIM14“ Ml4B3' BBB2’ Msz, M3M4, M4M5M5Bl belong to

sides of square A.

The thus defined curves subdivide square A into areas:

curve MM1M2M3M Bounds area A, .curve MM3M4M6M7M8M bounds area 3,,

curve M4M5M6M4 bounds area A3, curve M_M_M_M_. bounds area A

779787 4’
curve MM_M_M..M. .M bounds area A curve M. .M,.M, _M._.M bounds

87971110 5 107117137127 10
area AG' curve B1B3Ml3_MllM9M7M6MSBl bounds area A7, curve MMlOMlZ—
MlM bounds area Ag.

After defining the subdivision of square A, we can formulate
the theorem of synthesis of optimal control.

Thecrem

Any point x of square A will transfer to point (1, k) with
the least increase of the argument if controls u; u, are selected
r
as follows:

if x& AI\;/—;A(:;;\-/'ATVBZMVMMBlvMiM, then ty=—1, #,=0,

if  x€ AV MM\ MM, then '@ a&=+1, u4,=0,
if xX€ A\ A5V AV Ay BiM N MyuByBy, then u=-1, 2=+,
if xc AV MM, then g —a1, gy=-+1.

Note 1. The theorém is valid under the condition that
k > 1, a, is sufficiently small guantity, and a, is sufficiently



largei

Note 2. The problem stated in section 1 is tantamount to
the problem of this section. In reality, if the final point is

defined by the integers xi xg(xi < xgr,,then after replacing the
variables: Yy T (xi)—l, Y, = (xk) 1x2,,t' = (x )l/zt, we will be

under conditions of problem of section 2. If, however xt > xg

it is sufficient to change the direction on the apsidal line so

that variables x X, switch roles.

ll’
Note. 3. With sufficiently large k, area Ay degenerates
into a point lying on straight line X = 1. '

3. Proof of the Theorem of Synthesis

In the theory of optimal control, verification of possible
solutions is done with the aid of sufficient conditions of opti-
macy. The set of such conditions for the problem of speed of
respoﬁse is united in the concept of.regular synthesis [2]. But
regular synthesis is constructed in an open set, and in our case
the set in which the synthesis is constructed (sqguare A) is closed.
This fact.is essential since a portion of the optimal trajectory
can belong to the boundary of A. Thus, let us prove the theorem
using the method proposed in study [3].

Let us consider the functlons P (x ) and P (x , 2).
After designating with Pl and P2 the values of the functlons Pl

and P2 in area Ai’ let us define them as follows:

Pl=x, (x1+x2) ~an_ 1/2 [ (x1+y)—312dy

P2=_xl (xl +x2)""3"2

(3.1)



=Xy (x1+x2)_3f2+3’,2 f (xl_y) (xl“}‘y)_m dy,

R _Pi=x, (.r,+x2) a1

]
—_———

~ (3.2) [62

:‘P%;;xnxr;%raz“;::r;r“
Pi=x; (x4 x,)~4—1/2 J (s )32 dy;
—een T T (3.3)

e

¢ Pi=x, (x;+x2r3ﬂ+3/2 j () (x2+_v)“5f2 dy;
REEEE S AR (3.4)
4 U pZ Al 4x) T
Pi=x ()12 ] Gt y)-inay, 1 - '
: T I - " (3.5)
PO oty 1 B ) |
. I X3 (k) 32 _|_3]2kf (1 —y}) (-’c;+y) —5/2 dy
o Po=—xy ()2 . (3.6)
P‘_—_——w— ) .
+ xﬂ (xl +XQ) 3!2-{—3/2 ‘f (xl_‘J’) (xi_lf_}})——'.'j,'.?dy' . .
o Pg=-—x1 (x1+x2')—3f2 L ' N (3.7)
P P?';xé(xl%xi)” o e
P_8=—x1 Cert £33 J (x2—y) (x2+>’)“5"’d3’ [ "' (3.8)
_ by 2SR 3.8
s Peengia
P; 2 =Ky (x1+xz) 3!2'5‘3/2 j. (xz‘*Y) (x2+3’)_5ﬁdy (3.9)

By the clear form of functions P, and P2 défined by formulas

1
(3.1)-(3.9), it is easy to verify that the system whose set of"

velocities is a line Plxl + P,x, = 1 is also (following the termi-
nology of study [3]) auxiliary. The selection of optimal controls

is done namely as the theory of synthesis asserts.

The theorem is proven.
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